已知数列{an}满足a1=1,an+1=(1+cos2nπ2)an+sin2nπ2,n∈N*.(1)求a2,a3,a4,并求出数列{an}的通项公式;(2)设b

已知数列{an}满足a1=1,an+1=(1+cos2nπ2)an+sin2nπ2,n∈N*.(1)求a2,a3,a4,并求出数列{an}的通项公式;(2)设b

题型:不详难度:来源:
已知数列{an}满足a1=1,an+1=(1+cos2
2
)an+sin2
2
,n∈N*
(1)求a2,a3,a4,并求出数列{an}的通项公式;
(2)设bn=
a2n
a2n-1
,Sn=b1+b2+…+bn,求证:Sn≤n+
5
3
答案
(1)a2=(1+0)a1+1=2,a3=(1+1)a2+0=4,a4=(1+0)a3+1=5,
∵an+1=





an+1 (n=2m-1,m∈N+
2an(n=2m,m∈N+)
,∴





a2m+1=2a2m
a2m=a2m-1+1

∴a2m+1=2a2m-1+2,∴a2m+1+2=2(a2m-1+2),∴
a2m+1+2
a2m-1+2
=2
∴数列{a2m-1+2}是公比为2的等比数列,∴a2m-1+2=(a1+2)2m-1
∴a2m-1=-2+3•2m-1(m∈N+),a2m=
1
2
a2m+1=-1+3•2m-1(m∈N+),
∴an=





-2+3•2
n+1
2
-1
-1+3•2
n
2
-1
=





-2+3•2
n+1
2
-1
(n为奇数)
-1+3•2
n
2
-1
  (n为偶数)
=





-2+3•2
n-1
2
(n为奇数)
-1+3•2
n-2
2
(n为偶数)

(2)bn=
-1+3•2n-1
-2+3•2n-1
=1+
1
-2+3•2n-1
=1+
1
2(-1+3•2n-2)

①当n=1时,S1=b1=2≤1+
5
3
,不等式成立;
②当n≥2时,-1+3•2n-2≥2,∴0<
1
-1+3•2n-2
<1,
∵0<
1
-1+3•2n-2
1+1
(-1+3•2n-2)+1
=
2
3•2n-2

1
2(-1+3•2n-2)
1
3•2n-2

∴bn<1+
1
3•2n-2
=1+
4
3•2n

∴Sn<2+(1+
4
3•22
)+(1+
4
3•23
)+…+(1+
4
3•2n

=n+1+
4
3
×
1
4
1-
1
2
(1-
1
2n-1
)=n+1+
2
3
(1-
1
2n-1

=n+
5
3
-
4
3•2n
<n+
5
3

由①②知:Sn≤n+
5
3
举一反三
已知单调递增的等比数列{an}满足a2+a3+a4=28,a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=-nan,求数列{bn}的前n项和Sn
题型:不详难度:| 查看答案
设无穷等差数列{an}的前n项和为Sn
(1)若数列首项为a1=
3
2
,公差d=1,求满足Sk2=(Sk2的正整数k的值;
(2)若Sn=n2,求通项an
(3)求所有无穷等差数列{an},使得对于一切正整数k都有Sk2=(Sk2成立.
题型:不详难度:| 查看答案
数列{an}满足an=
n(n+1)
2
(n∈N*),则
1
a1
+
1
a2
+…+
1
a2013
等于______.
题型:不详难度:| 查看答案
对于k∈N*,g(k)表示k的最大奇数因子,如:g(3)=3,g(20)=5,设Sn=g(1)+g(2)+g(3)+…+g(2n),则Sn=______.
题型:不详难度:| 查看答案
等差数列{an}的前n项和为Sn,已知(a2-1)3+2011(a2-1)=sin
2011π
3
,(a2010-1)3+2011
(a2010-1)=cos
2011π
6
,则S2011
等于(  )
A.4022B.0C.2011D.2011


3
题型:信阳模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.