若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得: ①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数); ②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数); 再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题: (1)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,求数列{an}的通项公式; (2)当a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)时,求数列{an}的通项公式; (3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,记Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被数8整除,求所有满足条件的正整数n的取值集合. |