已知数列{an}的各项均为正数,其前n项和为Sn,且满足2Sn=an2+an(n∈N*).(Ⅰ)求a1,a2,a3;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若bn

已知数列{an}的各项均为正数,其前n项和为Sn,且满足2Sn=an2+an(n∈N*).(Ⅰ)求a1,a2,a3;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若bn

题型:不详难度:来源:
已知数列{an}的各项均为正数,其前n项和为Sn,且满足2Sn=an2+an(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若bn=n(
1
2
)an
,求数列{bn}的前n项和Tn
答案
(Ⅰ)a1=1,a2=2,a3=3.(3分)
(Ⅱ)2Sn=an2+an,①2Sn-1=an-12+an-1,(n≥2)②(5分)
①-②即得(an-an-1-1)(an+an-1)=0,(6分)
因为an+an-1≠0,所以an-an-1=1,所以an=n(n∈N*)(8分)
(Ⅲ)(Ⅲ)∵bn=n(
1
2
)n

Tn=
1
2
+2×(
1
2
)
2
+…+n×(
1
2
)
n

1
2
Tn=(
1
2
)
2
+2×(
1
2
)
3
+…+n×(
1
2
)
n+1

两式相减得,
1
2
Tn =
1
2
+(
1
2
)
2
 +…+(
1
2
)
n
-n×(
1
2
)
n+1

=1-
2+n
2n+1

所以Tn=2-
2+n
2n
.(13分)
举一反三
已知f(n)=
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
,则(  )
A.f(n)中共有n项,当n=2时,f(2)=
1
2
+
1
3
B.f(n)中共有n+1项,当n=2时,f(2)=
1
2
+
1
3
+
1
4
C.f(n)中共有n2-n项,当n=2时,f(2)=
1
2
+
1
3
D.f(n)中共有n2-n+1项,当n=2时,f(2)=
1
2
+
1
3
+
1
4
题型:不详难度:| 查看答案
等差数列{an}中,已知an=3n-1,若数列{
1
anan+1
}的前n项和为
4
25
,则n的值为(  )
A.13B.14C.15D.16
题型:不详难度:| 查看答案
已知数列{an}的前n项和为SnSn+an=2-(
1
2
)n
(n为正整数).
(1)求数列{an}的通项公式;
(2)若
cn
n+1
=
an
n+2
,Tn=c1+c2+…+cn,求Tn
题型:不详难度:| 查看答案
设数列{an}的前n项和为sn,a1=1,an=
sn
n
+2(n-1)
,(n∈N*),若s1+
s2
2
+
s3
3
+…+
sn
n
-(n-1)2=2013
,则n的值为(  )
A.1007B.1006C.2012D.2013
题型:不详难度:| 查看答案
记数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1.已知数列{bn}满足bn-2=3log3an
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.