求和:1+11+2+11+2+3+…+11+2+3+…+n=______.

求和:1+11+2+11+2+3+…+11+2+3+…+n=______.

题型:不详难度:来源:
求和:1+
1
1+2
+
1
1+2+3
+…+
1
1+2+3+…+n
=______.
答案
an=
1
1+2+3+…+n
=
2
n(n+1)

∴Sn=a1+a2+a3+…+an
=2(
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)

=2×(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
)

=2(1-
1
n+1
)=
2n
n+1

故答案:
2n
n+1
举一反三
用砖砌墙,第一层(底层)用去了全部砖块的一半多一块,第二层用去了剩下的一半多一块,…,依此类推,每一层都用去了前一层剩下的一半多一块,如果到第9层恰好砖用光.那么,共用去的砖块数为(  )
A.1022B.1024C.1026D.1028
题型:不详难度:| 查看答案
已知正项数列{an} 满足Sn+Sn-1=tan2+2(n≥2,t>0),a1=1,其中Sn是数{an} 的前n项和.
(1)求a2及通项an
(2)记数列{
1
anan+1
}的前n项和为Tn,若Tn<2对所有的n∈N+都成立,求证:0<t≤1.
题型:不详难度:| 查看答案
数列{an}的前n项和Sn=
n2
an+b
,若a1=
1
2
a2=
5
6

(1)求数列{an}的前n项和Sn
(2)求数列{an}的通项公式;
(3)设bn=
an
n2+n-1
,求数列{bn}的前n项和Tn
题型:浙江模拟难度:| 查看答案
已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=
1
2
,求数列{cn}的前n项和Sn
题型:不详难度:| 查看答案
已知数列{an}中,a1=2,an+1-an-2n-2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
6
bn
恒成立,求实数t的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.