(Ⅰ)由a3=27,27=2a2+23+1----------(1分)∴a2=9----------(2分) ∴9=2a1+22+1∴a1=2------------(3分) (Ⅱ)假设存在实数t,使得{bn}为等差数列. 则2bn=bn-1+bn+1------------(4分)∴2×(a n+t)=(a n-1+t)+(a n+1+t) ∴4an=4an-1+an+1+t------------(5分)∴4a n=4×+2a n+2n+1+t+1∴t=1------------(6分) 存在t=1,使得数列{bn}为等差数列.------------(7分) (Ⅲ)由(1)、(2)知:b 1=,b 2=------------(8分) 又{bn}为等差数列.b n=n+∴a n=(n+)•2n-1=(2n+1)•2n-1-1------------(9分) ∴Sn=3×20-1+5×21-1+7×22-1+…+(2n+1)×2n-1-1=3+5×2+7×22+…+(2n+1)×2n-1-n ∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n∴-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n----------(11分)=1+2×-(2n+1)×2n+n =(1-2n)×2n+n-1Sn=(2n-1)×2n-n+1------------(13分) |