设Sn=12+16+112+…+1n(n+1), 且 Sn•Sn+1=34,则n的值为______.

设Sn=12+16+112+…+1n(n+1), 且 Sn•Sn+1=34,则n的值为______.

题型:不详难度:来源:
Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
, 且 SnSn+1=
3
4
,则n的值为______.
答案
由于
1
n(n+1)
=
1
n
-
1
n+1

Sn=
1
2
+
1
6
+…+
1
n(n+1)
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1

SnSn+1=
n
n+1
n+1
n+2
=
n
n+2
=
3
4

∴n=6
故答案为:6
举一反三
在数列{an}中,如果存在非零常数T,使得am+T=am对于任意的非零自然数m均成立,那么就称数列{an}的周期数列,其中T叫做数列{an}的周期.已知周期数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列前2012项和是______.
题型:不详难度:| 查看答案
在数列{an}中,a1=1,an+1=(1+
1
n
)an+
n+1
2n

(1)设bn=
an
n
,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn
题型:不详难度:| 查看答案
若数列{an}和{bn}满足关系:an=
1+bn
1-bn
an+1=
1
2
(an+
1
an
)
n∈N*,a1=3.
(1)求证:数列{lgbn}是等比数列;
(2)设Tn=b1b2b3…bn,求满足Tn
1
128
的n的集合M;
(3)设cn=
2


bn
bn-1
,{cn}的前n项和为Sn,试探索an与Sn之间的关系式.
题型:不详难度:| 查看答案
已知数列{an}的通项an=33-2n,则|a1|+|a2|+…+|a10|=______.
题型:不详难度:| 查看答案
若数列{an}满足:a1=1,an+1=2an.n=1,2,3….则a1+a2+…+an=______.
题型:湖南难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.