已知等比数列{an}的前n项和为Sn=a·2n+b,且a1=3.(1)求a、b的值及数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.

已知等比数列{an}的前n项和为Sn=a·2n+b,且a1=3.(1)求a、b的值及数列{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.

题型:期末题难度:来源:
已知等比数列{an}的前n项和为Sn=a·2n+b,且a1=3.
(1)求a、b的值及数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn
答案
解:(1)∵等比数列{an}的前n项和为Sn=a·2n+b,且a1=3.
∴a1=2a+b=3,a2=4a+b﹣(2a+b)=2a,a3=(8a+b)﹣(4a+b)=4a,
∴公比q==2.
,∴a=3,b=﹣3.
∴an=3·2n﹣1
(2)bn==,Tn=(1+++…+)④
Tn=++…++)⑤
④﹣⑤得:Tn=(1+++…+)=
=(2﹣)=(1﹣),
∴Tn=(1﹣).
举一反三
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10。
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an-1b2+…+a1bn,n∈N*,证明:Tn+12=-2an+10bn(n∈N*)。
题型:高考真题难度:| 查看答案
定义:若数列{An}满足An+1=An2,则称数列{An}为“平方数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记,求数列{bn}的前n项之和Sn,并求使Sn>4020的n的最小值.
题型:期末题难度:| 查看答案
已知数列{an}满足,则该数列的前10项的和为(    )
题型:江苏省月考题难度:| 查看答案
已知等差数列{an}满足:a3=5,a4+a8=22.{an}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)求使得Sn>5n成立的最小正整数n的值.
(3)设cn=(﹣1)n+1anan+1,求数列{cn}的前n项和Tn
题型:期末题难度:| 查看答案
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,2是an+2 和an的等比中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明++…+<1;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m 的一切正整数n,不等式2Sn﹣4200>恒成立,求这样的正整数m共有多少个?
题型:江苏省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.