某木工制作实验柜需要大号木板40块,小号木板100块,已知建材市场出售A、B两种不同型号的木板.经测算知A型木板可同时锯得大号木板2块,小号木板6块,B型木板可
题型:不详难度:来源:
某木工制作实验柜需要大号木板40块,小号木板100块,已知建材市场出售A、B两种不同型号的木板.经测算知A型木板可同时锯得大号木板2块,小号木板6块,B型木板可同时锯得大号木板1块,小号木板2块.已知A型木板每张40元,B型木板每张16元,问A、B两种木板各买多少张,可使资金最少?并求出最少资金数. |
答案
设买A型木板x张,B型木板y张,付出资金z元, 则:z=40x+16y,且 | 2x+y≥40 | 6x+2y≥100 | x≥0 | y≥0 | x,y∈N |
| | , 由,得A(10,20). 由图可知当x=10,y=20时.zmin=400+320=720(元) 答:买A型木板10张,B型木板20张,付出资金最少为720元. |
举一反三
不等式y<|x|所表示的平面区域为(请画在右图中) |
如图,已知原点O及点A(1,2),B(a,1),若图中阴影部分(包括边界)上所有的点都在不等式x+y≤4所表示的平面区域内,则实数a的范围是( ) |
某公司计划在甲、乙两个仓储基地储存总量不超过300吨的一种紧缺原材料,总费用不超过9万元,此种原材料在甲、乙两个仓储基地的储存费用分别为500元/吨和200元/吨,假定甲、乙两个仓储基地储存的此种原材料每吨能给公司带来的收益分别为0.3万元和0.2万元. 问该公司如何分配在甲、乙两个仓储基地的储存量,才能使公司的收益最大,最大收益是多少万元? |
某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司该如何合理计划当天派用两类卡车的车辆数,可得最大利润,最大利润是多少元? |
将大小不同的两种钢板截成A、B两种规格的成品,每张钢板可同时截得这两种规格的成品的块数如下表所示,若现在需要A、B两种规格的成品分别为12块和10块,则至少需要这两种钢板共网______张.
规格类型 钢板类型 | A规格 | B规格 | 第一种钢板 | 2 | 1 | 第二种钢板 | 1 | 3 |
最新试题
热门考点
|