已知函数(为实数,),,⑴若,且函数的值域为,求的表达式;⑵设,且函数为偶函数,判断是否大0?⑶设,当时,证明:对任意实数,(其中是的导函数) .

已知函数(为实数,),,⑴若,且函数的值域为,求的表达式;⑵设,且函数为偶函数,判断是否大0?⑶设,当时,证明:对任意实数,(其中是的导函数) .

题型:不详难度:来源:
已知函数为实数,),,⑴若,且函数的值域为,求的表达式;
⑵设,且函数为偶函数,判断是否大0?
⑶设,当时,证明:对任意实数(其中的导函数) .
答案
(1),(2)成立,(3)证明略.
解析

试题分析:(1)由于的表达式与有关,而确定的表达式只需求出待定系数,因此只要根据题目条件联立关于的两个关系即可;(2)由为偶函数可先确定,而可不妨假设,则,代入的表达式即可判断的符号;(3)原不等式证明等价于证明“对任意实数” 即等价于证明“ ”,可先证,再证.根据不等式性质,可证得.
试题解析:⑴因为,所以,因为的值域为,所以,所以,所以,所以
⑵因为是偶函数,所以,又,所以,因为,不妨设,则,又,所以,此时,所以
⑶因为,所以,又,则,因为,所以,则原不等式证明等价于证明“对任意实数” 即 .
先研究 ,再研究.
① 记,令,得,当单增;当单减. 所以,,即.
② 记,所以,单减,所以,,即.
综上①、②知,.
即原不等式得证,对任意实数.
举一反三
定义在上的函数是它的导函数,且恒有成立,则(     )
A.B.
C.D.

题型:不详难度:| 查看答案
已知函数g(x)="aln" x·f(x)=x3 +x2+bx
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.
题型:不详难度:| 查看答案
已知函数f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b为常数).
(1)若g(x)在x=l处的切线方程为y=kx-5(k为常数),求b的值;
(2)设函数f(x)的导函数为f’(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;
(3)令F(x)=f(x)-g(x),若函数F(x)存在极值,且所有极值之和大于5+1n2,求a的取值范围.
题型:不详难度:| 查看答案
设函数.
(1)当时,求函数的极大值;
(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;
(3)设,当时,求函数的单调减区间.
题型:不详难度:| 查看答案
R,函数
(1)若x=2是函数y=f(x)的极值点,求实数a的值;
(2)若函数在区间[0,2]上是减函数,求实数a的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.