已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1(1)y=f(x)在x=-2时有极值,求f(x)的

已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1(1)y=f(x)在x=-2时有极值,求f(x)的

题型:不详难度:来源:
已知函数:f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1
(1)y=f(x)在x=-2时有极值,求f(x)的表达式;
(2)函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.
答案
(1) f(x)=x3+2x2-4x+5; (2) b≥0
解析

试题分析:(1)先由函数导数的几何意义用含a,b,c的代数式表达出函数在点P处的切线方程,再与已知的切线相比较可得关于a,b,c的两个方程;另又因为y=f(x)在x=-2时有极值,所以f′(-2)=0再得到一个关于a,b,c的方程,三个字母三个方程,通过解方程组就可求得字母a,b,c的值,从而求得f(x)的表达式; (2) 由函数y=f(x)在区间[-2,1]上单调递增,知其导函数f′(x)在[-2,1]上恒有f′(x)≥0,注意到(1)中的①式:2a+b=0,所以有,从而有3x2-bx+b≥0在[-2,1]上恒成立,分离参数转化为函数的最值问题,可求得b的取值范围.
试题解析:(1)由f(x)=x3+ax2+bx+c,求导数得f′(x)=3x2+2ax+b,
过y=f(x)上点P(1,f(1))的切线方程为:y-f(1)=f′(1)(x-1),
即y-(a+b+c+1)=(3+2a+b)(x-1)
而过y=f(x)上P(1,f(1))的切线方程为:y=3x+1

又∵y=f(x)在x=-2时有极值,故f′(-2)=0 ∴-4a+b=-12③
由①②③相联立解得a=2,b=-4,c=5,所以f(x)=x3+2x2-4x+5
(2)y=f(x)在区间[-2,1]上单调递增
又f′(x)=3x2+2ax+b,由(1)知2a+b=0
∴f′(x)=3x2-bx+b
依题意f′(x)在[-2,1]上恒有f′(x)≥0,即3x2-bx+b≥0在[-2,1]上恒成立
注意到,所以3x2-bx+b≥0在[-2,1]上恒成立等价于:,令知当,当,所以在[-2,1)上有最大值为,故知,且当x=1时f′(x)≥0也成立,所以
举一反三
设函数,( 是两两不等的常数),则             
题型:不详难度:| 查看答案
已知函数,.
(1)求函数的极值;(2)若恒成立,求实数的值;
(3)设有两个极值点(),求实数的取值范围,并证明.
题型:不详难度:| 查看答案
已知函数是它的导函数,则            。
题型:不详难度:| 查看答案
已知函数
(1)求函数上的值域;
(2)若,对恒成立,
求实数的取值范围
题型:不详难度:| 查看答案
已知函数.
(1)若处取得极值,求的单调递增区间;
(2)若在区间内有极大值和极小值,求实数的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.