已知函数 .(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

已知函数 .(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

题型:不详难度:来源:
已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.
答案
(1);(2).
解析

试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,因为函数上有极值,所以极值点的横坐标需落在内,对求导,令判断出函数的单调区间,决定出极值点所在位置,得到极值点的横坐标,让落在区间内,列出不等式;第二问,将已知条件先转化为,下面主要任务是求函数的最小值,设出新函数,对它求导,判断出函数的单调性,确定当有最小值,即,所以.
试题解析:(Ⅰ)因为,则
时,,当时,.
所以上单调递增,在上单调递减,
所以函数处取得极大值.
因为函数在区间(其中)上存在极值,
所以 解得
(Ⅱ)不等式即为 记
所以
,则

上单调递增,
,从而
上也单调递增,
所以,所以
举一反三
已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记
(ⅰ)若上单调递增,求实数的取值范围;
(ⅱ)证明:.
题型:不详难度:| 查看答案
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
题型:不详难度:| 查看答案
已知函数为常实数)的定义域为,关于函数给出下列命题:
①对于任意的正数,存在正数,使得对于任意的,都有
②当时,函数存在最小值;
③若时,则一定存在极值点;
④若时,方程在区间(1,2)内有唯一解.
其中正确命题的序号是          .
题型:不详难度:| 查看答案
已知函数为常数)
(1)当恒成立,求实数的取值范围;
(2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)
题型:不详难度:| 查看答案
已知函数的图像在点处的切线方程为.
(I)求实数的值;
(Ⅱ)当时,恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.