已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值.(1)求f(x)的表达式和极值.(2)若f(x)在区间[m,m+4]上是单调函数,试求m

已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值.(1)求f(x)的表达式和极值.(2)若f(x)在区间[m,m+4]上是单调函数,试求m

题型:不详难度:来源:
已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值.
(1)求f(x)的表达式和极值.
(2)若f(x)在区间[m,m+4]上是单调函数,试求m的取值范围.
答案
(1)∵f′(x)=6x2+2ax+b





f′(-1)=0
f′(2)=0





6-2a+b=0
24+4a+b=0

解得





a=-3
b=-12

∴f(x)=2x3-3x2-12x+3
f′(x)=6x2-6x-12
f′(x)>0解得x<-1或x>2
由f′(x)<0解得-1<x<2
故函数f(x)在(-∞,-1)和(2,+∞)递增,函数在(-1,2)递减
所以当x=-1时,有极大值10;当x=2时,有极小值-17
(2)由(1)知,若f(x)在区间[m,m+4]上是单调函数,需
m+4≤-1或





m≥-1
m+4≤2
或m≥2
所以m≤-5或m≥2
举一反三
已知函数f(x)=ax-
1
2x
-lnx
在(0,+∞)上是增函数,则a的取值范围是______.
题型:不详难度:| 查看答案
已知函数f(x)=x-(a+1)lnx-
a
x
(a>0).
(Ⅰ)当a=5时,求函数f(x)的单调递增区间;
(Ⅱ)求f(x)的极大值;
(Ⅲ)求证:对于任意a>1,函数f(x)<0在(0,a)上恒成立.
题型:不详难度:| 查看答案
已知函数f(x)=alnx-ax-3(a∈R),函数f(x)的图象在x=4处的切线的斜率为
3
2

(1)求a值及函数f(x)的单调区间;
(2)若函数g(x)=
1
3
x3+x2[f′(x)+
m
2
]
在区间(1,3)上不是单调函数(其中f′(x)是f(x)的导函数),求实数m的取值范围.
题型:不详难度:| 查看答案
已知a∈R,函数f(x)=x2+ax-2-lnx.
(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)若a=1,且对于区间[
1
3
,1]
上任意两个自变量x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的取值范围.
(参考数据:ln3≈1.0986)
题型:不详难度:| 查看答案
已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f (x) 的图象在点A (1,f (1))处的切线方程;
(2)若f (x) 在R上单调,求a的取值范围;
(3)当a=
5
2
时,求函数f(x)的极小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.