设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点,求a与b的关系式(用a表示b),并求f(x)的单调区间。

设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点,求a与b的关系式(用a表示b),并求f(x)的单调区间。

题型:0101 月考题难度:来源:
设x=3是函数f(x)=(x2+ax+b)e3-x(x∈R)的一个极值点,求a与b的关系式(用a表示b),并求f(x)的单调区间。
答案
解:2a+b=-3,
当a<-4时,减区间(-∞,3),(-a-1,+∞),增区间(3,-a-1);
当a>-4时,减区间(-∞,-a-1),(3,+∞),增区间(-a-1,3)。
举一反三
函数y=4x2+的单调递增区间是

[     ]

A.(0,+∞)
B.(-∞,1)
C.
D.(1,+∞)
题型:0103 月考题难度:| 查看答案
对于R上可导的任意函数f(x),且f′(1)=0,若满足(x-1)f′(x)>0,则必有

[     ]

A、f(0)+f(2)<2f(1)
B、f(0)+f(2)≥2f(1)
C、f(0)+f(2)>2f(1)
D、f(0)+f(2)≤2f(1)
题型:0103 月考题难度:| 查看答案
设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围是(    )。
题型:0103 月考题难度:| 查看答案
设a≥0,f (x)=x-1-ln2x+2a ln x(x>0)。
(1)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x-2aln x+1。
题型:0103 月考题难度:| 查看答案
已知函数f(x)=ax3-3x2+1-
(Ⅰ)若函数f(x)在x=-1时取到极值,求实数a的值;
(Ⅱ)试讨论函数f(x)的单调性;
(Ⅲ)当a>1时,在曲线y=f(x)上是否存在这样的两点A,B,使得在点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,若存在,试求a的取值范围;若不存在,请说明理由。
题型:0103 月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.