设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围是(    )。

设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围是(    )。

题型:0103 月考题难度:来源:
设函数f(x)=kx3+3(k-1)x2-k2+1在区间(0,4)上是减函数,则k的取值范围是(    )。
答案
举一反三
设a≥0,f (x)=x-1-ln2x+2a ln x(x>0)。
(1)令F(x)=xf′(x),讨论F(x)在(0,+∞)内的单调性并求极值;
(2)求证:当x>1时,恒有x>ln2x-2aln x+1。
题型:0103 月考题难度:| 查看答案
已知函数f(x)=ax3-3x2+1-
(Ⅰ)若函数f(x)在x=-1时取到极值,求实数a的值;
(Ⅱ)试讨论函数f(x)的单调性;
(Ⅲ)当a>1时,在曲线y=f(x)上是否存在这样的两点A,B,使得在点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,若存在,试求a的取值范围;若不存在,请说明理由。
题型:0103 月考题难度:| 查看答案
已知函数f(x)=x+(a∈R),g(x)=lnx,
(1)求函数F(x)=f(x)+g(x)的单调区间;
(2)若关于x的方程=x·[f(x)-2e](e为自然对数的底数)只有一个实数根,求a的值。
题型:广东省期中题难度:| 查看答案
设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2
(Ⅰ)求a的取值范围,并讨论f(x)的单调性;
(Ⅱ)求f(x2)的取值范围。
题型:广东省期中题难度:| 查看答案
已知函数f(x)=ax3+bx2+cx,
(Ⅰ)若函数f(x)有三个零点x1,x2,x3,且x1+x2+x3=,x1x3=-12,且a>0,求函数f(x)的单调区间;
(Ⅱ)若f′(1)=a,3a>2c>2b,试问:导函数f′(x)在区间(0,2)内是否有零点,并说明理由;
(Ⅲ)在(Ⅱ)的条件下,若导数f′(x)的两个零点之间的距离不小于,求的取值范围。
题型:天津月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.