设函数。(1)求函数f(x)的单调区间;(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集。

设函数。(1)求函数f(x)的单调区间;(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集。

题型:江西省高考真题难度:来源:
设函数
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集。
答案
解:(1)
,得
因为当时,
时,
时,
所以的单调增区间是:;单调减区间是
(2)由


故:
时,解集是:
时,解集是:
时,解集是:
举一反三
已知函数f(x)=-x3+3x2+9x+a,
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值。
题型:北京高考真题难度:| 查看答案
已知f(x)=4x+ax2-x3(x∈R)在区间[-1,1]上是增函数,
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=2x+x3的两个非零实根为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由。
题型:福建省高考真题难度:| 查看答案
如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,直线x=t(0<t<1)与曲线C1,C2分别交于B,D,
(Ⅰ)写出四边形ABOD的面积S与t的函数关系式S=f(t);
(Ⅱ)讨论f(t)的单调性,并求f(t)的最大值。
题型:湖南省高考真题难度:| 查看答案
已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围。
题型:高考真题难度:| 查看答案
若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围。
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.