解:(1)由求导数得到
f"(x)=6x2+6(1-2a)x+6a(a-1)=6(x-a)(x-a+1)
∴y=f(x)在(-∞,a-1]上为增函数;在[a-1,a]上为减函数;在[a,+∞)上为增函数。
(2)由
对于关于x的二次方程
无实根或仅有零根,仅有零根不可能,
则判别式Δ=[3(1-2a)]2-4×2×6a(a-1)
=3(-2a+3)(2a+1)<0
∴或
故所求a的取值范围为。
(3)设y=1与y=f(x)相切于点(x0,y0)
则
在x0=a时,则
∴
而当恒成立
∴2a3-3a2=1不可能成立,
在x0=a-1时,则
化简为,则a=0或
符合
因此所求符合条件的a值分别为0或。
© 2017-2019 超级试练试题库,All Rights Reserved.