设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an)。(1)证明:函数f(x)在区间(0,1)是增函数;(2)证明:an<an+1<

设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an)。(1)证明:函数f(x)在区间(0,1)是增函数;(2)证明:an<an+1<

题型:高考真题难度:来源:
设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an)。
(1)证明:函数f(x)在区间(0,1)是增函数;
(2)证明:an<an+1<1;
(3)设b∈(a1,1),整数k≥。证明:ak+1>b。
答案
解:(1)当0<x<1时,f"(x)=1-lnx-1=-ln-x>0
所以函数f(x)在区间(0,1)是增函数;
(2)当0<x<1时,f(x)=x-xlnx>x,
又由(1)及f(x)在x=1处连续知,
当0<x<1时,f(x)<f(1)=1,
因此,当0<x<1时,0<x<f(x)<1  ①
下面用数学归纳法证明:  ②
(i)由0<a1<1,a2=f(a1),应用式①得0<a1<a2<1,即当n=1时,不等式②成立;
(ii)假设n=k时,不等式②成立,即

则由①可得


故当n=k+1时,不等式②也成立
综合(i)(ii)证得

(3)由(2)知,{an}逐项递增,故若存在正整数m≤k,使得
,则
否则若am<b(m≤k),则由0<a1≤am<n<1(m≤k)知



由③知
于是
举一反三
设函数f(x)=lnx+ln(2-x)+ax(a>0),
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若f(x)在(0,1]上的最大值为,求a的值。
题型:江西省高考真题难度:| 查看答案
设函数f(x)=x2+bln(x+1),其中b≠0。
(1)当时,判断函数f(x)在定义域上的单调性;
(2)求函数f(x)的极值点;
(3)证明:对任意的正整数n,不等式ln(+1)>都成立。
题型:山东省高考真题难度:| 查看答案
已知函数f(x)=
(1)设a>0,讨论y=f(x)的单调性;
(2)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围。
题型:高考真题难度:| 查看答案
设函数f(x)=x2+aln(1+x)有两个极值点x1,x2,且x1<x2
(Ⅰ)求a的取值范围,并讨论f(x)的单调性;
(Ⅱ)证明:
题型:高考真题难度:| 查看答案
如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)在区间(-3,1)上单调递增。
则正确命题的序号是(    )。
题型:0103 模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.