如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,

如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,

题型:不详难度:来源:
如图,已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=3tx(其中-1<t<1,t为数);.若直线l2与函数f(x)的图象以及直线l1,l2与函数f(x)的图象所围成的封闭图形如阴影所示.
(1)求y=f(x);
(2)求阴影面积s关于t的函数y=s(t)的解析式;(3)若过点A(1,m),m≠4可作曲线y=s(t),t∈R的三条切线,求实数m的取值范围.
答案
(1)由图可知二次函数的图象过点(0,0),(1,0)
则f(x)=ax(x-1),
又因为图象过点(2,6)
∴6=2a∴a=3
∴函数f(x)的解析式为f(x)=3x(x-1)=3x2-3x
(2)由





y=3x2-3x
y=3tx
得x2-(1+t)x=0,∴x1=0,x2=1+t,
∵-1<t<1,∴直线l2与f(x)的图象的交点横坐标分别为0,1+t,
由定积分的几何意义知:s(t)=
1+t0
[3tx-(3x2-3x)]dx+
21+t
[(3x2-3x)-3tx]dx

=(
3t+3
2
x2-x3)
|1+t0
+(
-3t-3
2
x2+x3)
|21+t

=(1+t)3+2-6t,(-1<t<1);
(3)∵曲线方程为s(t)=(1+t)3+2-6t,t∈R,∴s"(t)=3(1+t)2-6,
∴点A(1,m),m≠4不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=(1+x03+2-6x0
∵s"(x0)=3(1+x02-6,故切线的斜率为3(1+x0)2-6=
y0-m
x0-1
=
(1+x0)3-6x0+2-m
x0-1

整理得2x03-6x0+m=0.
∵过点A(1,m)可作曲线的三条切线,∴关于x0方程2x03-6x0+m=0有三个实根.
设g(x0)=2x03-6x0+m,则g"(x0)=6x02-6,由g"(x0)=0得x0=±1
∵当x0∈(-∞,-1)∪(1,+∞)时,g"(x0)>0∴g(x0)在(-∞,-1),(1,+∞)上单调递增,
∵当x0∈(-1,1)时,g"(x0)<0,∴g(x0)在(-1,1)上单调递减.
∴函数g(x0)=2x03-6x0+m的极值点为x0=±1,
∴关于x0方程2x03-6x0+m=0有三个实根的充要条件是





g(-1)>0
g(1)<0
,即





-2-6×(-1)+m>0
2-6+m<0

解得-4<m<4,
故所求的实数m的取值范围是-4<m<4.
举一反三
如图,x=±1是函数f(x)=ax3+bx2+cx+d的两个极值点,f′(x)为函数f(x)的导函数,则不等式x•f′(x)>0的解集为______.
题型:不详难度:| 查看答案
lim
△x→0
f(x0+2△x)-f(x0)
△x
=1,则f′(x0)等于(  )
A.2B.-2C.
1
2
D.-
1
2
题型:不详难度:| 查看答案
已知函数f(x)=x3-x2-x.
(Ⅰ)求函数f(x)在点(2,2)处的切线方程;
(Ⅱ)求函数f(x)的极大值和极小值.
题型:不详难度:| 查看答案
已知函数y=xlnx
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
题型:不详难度:| 查看答案
若曲线y=x3+ax在原点处的切线方程是2x-y=0,则实数a=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.