直线y=x是曲线y=x3-3x2+ax的切线,则a的值为(  )A.1B.134C.1或134D.4

直线y=x是曲线y=x3-3x2+ax的切线,则a的值为(  )A.1B.134C.1或134D.4

题型:眉山一模难度:来源:
直线y=x是曲线y=x3-3x2+ax的切线,则a的值为(  )
A.1B.
13
4
C.1或
13
4
D.4
答案
设切点P(x0,x0
∵直线y=x是曲线y=x3-3x2+ax的切线
∴切线的斜率为1
∵y=x3-3x2+ax
∴y′x=x0=3x2-6x+a x=x0=3x02-6x0+a
根据切线的几何意义得:
3x02-6x0+a=1①
∵点P在曲线上
∴x03-3x02+ax0=x0
由①,②联立得





x0=0
3
x02
-6x0+a-1=0
③或





x20
-3x0+a-1=0
3
x20
-6x0+a-1=0

由③得,a=1
由④得x02-3x0=3x02-6x0解得x0=0或
3
2
,把x0的值代入④中,得到a=1或
13
4

综上所述,a的值为1或
13
4

故选C.
举一反三
已知函数f(x)=
lnx+a
x
(a∈R)
(Ⅰ)求f(x)的极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围;
(Ⅲ)设各项为正的数列{an}满足:a1=1,an+1=lnan+an+2,n∈N*,求证:an2n-1
题型:不详难度:| 查看答案
函数f(x)=
1+lnx
x
在(1,1)处的切线方程是(  )
A.x=1B.y=x-1C.y=1D.y=-1
题型:不详难度:| 查看答案
已知函数f(x)=
a+blnx
x+1
在点(1,f(1))处的切线方程为x+y=2.
(I)求a,b的值;
(II)对函数f(x)定义域内的任一个实数x,f(x)<
m
x
恒成立,求实数m的取值范围.
题型:不详难度:| 查看答案
已知a>0,函数f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1

(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)在(-1,1)上的极值;
(Ⅲ)若在区间[-
1
2
1
2
]
上至少存在一个实数x0,使f(x0)≥g(x0)成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R).
(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;
(2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围;
(3)对∀x∈[-1,1],都有|f′(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式.
题型:惠州模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.