已知有极大值又有极小值,则a取值范围是(    )。

已知有极大值又有极小值,则a取值范围是(    )。

题型:吉林省期中题难度:来源:
已知有极大值又有极小值,则a取值范围是(    )。
答案
举一反三
已知定义在R上的函数,其中a为常数。(1)若是函数的一个极值点,求a的值;
(2)若函数在区间(-1,0)上是增函数,求a的取值范围
题型:吉林省期中题难度:| 查看答案
设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B。
(1)求集合D(用区间表示)
(2)求函数f(x)=2x3-3(1+a)x2+6ax在D内的极值点。
题型:广东省高考真题难度:| 查看答案
已知函数f(x)=aln(1+ex)-(a+1)x。
(1)已知f(x)满足下面两个条件,求a的取值范围。
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由。
题型:湖南省月考题难度:| 查看答案
已知函数g(x)=ax3+bx2+cx(),g(﹣1)=0,则g(x)的导函数f(x)满足f(0)f(1)0.设x1,x2为方程f(x)=0的两根. (1)求的取值范围;
(2)若当|x1﹣x2|最小时,g(x)的极大值比极小值大,求g(x)的解析式.
题型:安徽省月考题难度:| 查看答案
设x1,x2是函数的两个极值点,且|x1﹣x2|=2.
(Ⅰ)证明:0<a≤1;
(Ⅱ)证明:
题型:甘肃省月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.