f(x)=-cos2x-4tsincos+4t3+t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t)。(1)求g(t)的表达式;(2)讨论g

f(x)=-cos2x-4tsincos+4t3+t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t)。(1)求g(t)的表达式;(2)讨论g

题型:安徽省高考真题难度:来源:
f(x)=-cos2x-4tsincos+4t3+t2-3t+4,x∈R,其中|t|≤1,将f(x)的最小值记为g(t)。
(1)求g(t)的表达式;
(2)讨论g(t)在区间(-1,1)内的单调性并求极值。
答案
解:(1)
=sin2x-1-2tsinx+4t3+t2-3t+4


由于,故当时,达到其最小值g(t),

(2)我们有
列表如下:

由此可见,g(t)在区间单调增加,
在区间单调减小,极小值为,极大值为
举一反三
已知函数f(x)=(c>0且c≠1,k∈R)恰有一个极大值点和一个极小值点,其中一个是x=-c。(1)求函数f(x)的另一个极值点;
(2)求函数f(x)的极大值M和极小值m,并求M-m≥1时k的取值范围。
题型:陕西省高考真题难度:| 查看答案
已知函数有三个极值点。
(1)证明:-27<c<5;
(2)若存在实数c,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围。
题型:湖南省高考真题难度:| 查看答案
已知a,b,c∈R,且三次方程f(x)=x3-ax2+bx-c=0有三个实根x1,x2,x3
(Ⅰ)类比一元二次方程根与系数的关系,写出此方程根与系数的关系;
(Ⅱ)若a,b,c均大于零,试证明:x1,x2,x3都大于零;
(Ⅲ)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β处取得极值,且-1<α<0<β<1,试求此方程三个根两两不等时c的取值范围。
题型:专项题难度:| 查看答案
设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点,
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)的单调区间。
题型:四川省高考真题难度:| 查看答案
设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点。
(1)求a和b的值;
(2)讨论f(x)的单调性;
(3)设 g(x)=x3-x2,试比较f(x)与g(x)的大小。
题型:山东省高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.