已知函数f(x)=a|x|+2ax(a>0,a≠1),(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;(2)设函数g(x)=f

已知函数f(x)=a|x|+2ax(a>0,a≠1),(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;(2)设函数g(x)=f

题型:南京模拟难度:来源:
已知函数f(x)=a|x|+
2
ax
(a>0,a≠1),
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
答案
(1)令ax=t,x>0,
∵a>1,所以t>1,
∴关于x的方程f(x)=m有两个不同的正数解
转化为:方程t+
2
t
=m
有相异的且均大于1的两根,





△=m2-8>0
m
2
>1
12-m+2>0

解得2


2
<m<3

故实数m的取值范围是(2


2
,3)

(2)g(x)=a|x|+2ax,x∈[-2,+∞)
①当a>1时,
x≥0时,ax≥1,g(x)=3ax,所以g(x)∈[3,+∞),
-2≤x<0时,
1
a2
ax<1
,g(x)=a-x+2ax,所以g′(x)=-a-xlna+2axlna=
2(ax)2-1
ax
lna

ⅰ当
1
a2


1
2
1<a<
42

时,对∀x∈(-2,0),g′(x)>0,所以g(x)在[-2,0)上递增,
所以g(x)∈[a2+
2
a2
,3)

综上:g(x)有最小值为a2+
2
a2
与a有关,不符合(10分)
ⅱ当
1
a2


1
2
a≥
42

时,由g′(x)=0得x=-
1
2
loga2

且当-2<x<-
1
2
loga2
时,g′(x)<0,
-
1
2
loga2<x<0
时,g′(x)>0,
所以g(x)在[-2,-
1
2
loga2]
上递减,在[-
1
2
loga2,0]
上递增,
所以g(x)min=g(-
1
2
loga2)
=2


2

综上:g(x)有最小值为2


2
与a无关,符合要求.
②当0<a<1时,
a)x≥0时,0<ax≤1,g(x)=3ax,所以g(x)∈(0,3]
b)-2≤x<0时,1<ax
1
a2
,g(x)=a-x+2ax
所以g′(x)=-a-xlna+2axlna=
2(ax)2-1
ax
lna
<0,g(x)在[-2,0)上递减,
所以g(x)∈(3,a2+
2
a2
]

综上:a)b)g(x)有最大值为a2+
2
a2
与a有关,不符合
综上所述,实数a的取值范围是a≥
42

举一反三
函数f(x)的导函数f"(x)=2x+b,且f(0)=c,g(x)=
x
f(x)

(1)若c>0,g(x)为奇函数,且g(x)的最大值为
1
2
求b,c的值;
(2)若函数F(x)=f(x)+2-c定义域为[-1,1],且F(x)的最小值为2,当函数f(x)在区间[-1,1]上有零点,求实数c的取值范围.
题型:不详难度:| 查看答案
f(x)=
1
3
x3-
1
2
x2
在区间[-1,1]上的最大值是______.
题型:不详难度:| 查看答案
已知f(x)=lnx,g(x)=
3
2
-
a
x
,(a∈R)

①若方程e2f(x)=g(x)在区间[
1
2
,1]
上有解,求a的取值范围;
②若函数h(x)=
1
2
x2-ax+(a-1)f(x)(a≥1)
,讨论函数h(x)的单调性.
题型:不详难度:| 查看答案
已知函数fn(x)=
ln(x+n)-n
x+n
+
1
n(n+1)
(其中n为常数,n∈N*),将函数fn(x)的最大值记为an,由an构成的数列{an}的前n项和记为Sn
(Ⅰ)求Sn
(Ⅱ)若对任意的n∈N*,总存在x∈R+使
x
ex-1
+a=an
,求a的取值范围;
(Ⅲ)比较
1
en+1+e•n
+fn(en)
与an的大小,并加以证明.
题型:不详难度:| 查看答案
函数f(x)=
2x+1
x-1
,x∈[2,4]的最小值是(  )
A.3B.4C.5D.6
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.