在中,,,,则           .

在中,,,,则           .

题型:不详难度:来源:
中,,则           .
答案
.
解析

试题分析:解法一:由余弦定理得,即,整理得,由于,解得
解法二:由正弦定理得,所以,由于,所以,因此,所以,所以为直角三角形,且为斜边,由勾股定理得.
举一反三
某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.
题型:不详难度:| 查看答案
如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记

(1)问当为多少时,所建造的三角形露天活动室的面积最大?
(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。
题型:不详难度:| 查看答案
在等腰△中,是腰的中点,若,则(     )
A.B.C.D.

题型:不详难度:| 查看答案
中,角所对应的边分别为.若,则(     )
A.B.3C.或3D.3或

题型:不详难度:| 查看答案
.
(1)求的取值范围;
(2)设,试问当变化时,有没有最小值,如果有,求出这个最小值,如果没有,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.