如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩

如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩

题型:不详难度:来源:
如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。
答案
最少要取走11个棋子,才可能使得余下的棋子没有五子连珠
解析
最少要取出11个棋子,才可能满足要求。其原因如下:
如果一个方格在第i行第j列,则记这个方格为(ij)。
第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连。用反证法。假设可取出10个棋子,使余下的棋子没有一个五子连珠。如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。这样,10个被取出的棋子不会分布在右下角的阴影部分。同理,由对称性,也不会分布在其他角上的阴影部分。第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格。同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子。在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子。这样,在这些区域内至少已取出了10个棋子。因此,在中心阴影区域内不能取出棋子。由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了。矛盾。
                    
图1                                                                                    图2
第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠。如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠。
综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠。
举一反三
在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
题型:不详难度:| 查看答案
现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?
题型:不详难度:| 查看答案
从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?
题型:不详难度:| 查看答案
某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.
(1)任选1个班的学生参加社会实践,有多少种不同的选法?
(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?
(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?
题型:不详难度:| 查看答案
ABC三个城市,上午从A城去B城有5班汽车,2班火车,都能在12:00前到达B城,下午从B城去C城有3班汽车,2班轮船.某人上午从A城出发去B城,要求12:00前到达,然后他下午去C城,问有多少种不同的走法?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.