若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”.例如:32是“可连数”.因32+33+34不产生进位现象;23不是“可连

若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”.例如:32是“可连数”.因32+33+34不产生进位现象;23不是“可连

题型:湖北模拟难度:来源:
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”.例如:32是“可连数”.因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象,那么,小于100的“可连数”的个数为(  )
答案
举一反三
A.9B.10C.1lD.12
甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:浙江模拟难度:| 查看答案
题型:不详难度:| 查看答案
A.150种B.180种C.300种D.345种w
从0,1,2,3,4,5,6,7七个数中任取两个数相乘,使所得的积为偶数,这样的偶数共有几个?
有两排座位,前排11个座位,后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?______(用数字作答).
若自然数n使得作加法n+(n+1)+(n+2)运算均不产生进位现象,则称n为“给力数”,例如:32是“给力数”,因32+33+34不产生进位现象;23不是“给力数”,因23+24+25产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A,则集合A中的数字和为______.
安排5名歌手的演出顺序时,要求某名歌手不是第一个出场,也不是最后一个出场,不同的安排方法总数为(  )
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.60种B.72种C.80种D.120种