((10分)如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、P

((10分)如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、P

题型:不详难度:来源:
((10分)如图所示,在四棱锥PABCD中,底面为直角梯形,ADBCBAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BCMN分别为PCPB的中点.

(1)求证:PBDM
(2)求BD与平面ADMN所成的角.                          
答案
30°
解析
(1)证明 ∵N是PB的中点,PA=AB,

∴AN⊥PB.∵∠BAD=90°,∴AD⊥AB.
∵PA⊥平面ABCD,∴PA⊥AD.
∵PA∩AB=A,∴AD⊥平面PAB,∴AD⊥PB.             
又∵AD∩AN=A,∴PB⊥平面ADMN.
∵DM平面ADMN,∴PB⊥DM.                        
(2)解 连接DN,
∵PB⊥平面ADMN,
∴∠BDN是BD与平面ADMN所成的角,                
在Rt△BDN中,
sin∠BDN===,                           
∴∠BDN=30°,即BD与平面ADMN所成的角为30°.            
举一反三
(10分)在四棱锥P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD

PA=2AB
(1)求证:平面PAC⊥平面PBD
(2)求二面角B—PC—D的余弦值.
题型:不详难度:| 查看答案
如图:已知矩形ABCD,PA平面ABCD,M、N分别是AB、PC的中点
(1)求证:MN∥平面PAD
(2)求证: MNCD.
(3)若 PDA=求证:MN 平面PCD.
 
题型:不详难度:| 查看答案
用一个平面截正方体一角,所得截面一定是(   )
A.锐角三角形B.钝角三角形C.直角三角形D.都有可能

题型:不详难度:| 查看答案
对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;  ②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD;
其中正确的命题的序号是(   )
A.①②B.②③C.②④D.①④

题型:不详难度:| 查看答案
(本小题共12分)如图,在四棱锥中,底面四边长为1的菱形,, , ,的中点,的中点,求异面直线OC与MN所成角的余弦值。

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.