图中多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且B1B=D1D。已知截面AB1C1D1与底面ABCD成30度的二面角,AB=1

图中多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且B1B=D1D。已知截面AB1C1D1与底面ABCD成30度的二面角,AB=1

题型:不详难度:来源:
图中多面体是过正四棱柱的底面正方形ABCD的顶点A作截面AB1C1D1而截得的,且B1B=D1D。已知截面AB1C1D1与底面ABCD成30度的二面角,AB=1,则这个多面体的体积为(   )

A.
B.
C.
D.
答案
D
解析

试题分析:作D1E∥DC,连接B1D1,B1E,BD,则几何体被分割成两个棱锥与一个棱柱
∵截面AB1C1D1与底面成30°的二面角,∴∠CAC1=30°
∵AB=1,∴DD1=,∴CC1=    ∴VA-BDD1B1=
VBDC-B1D1C1=∴多面体的体积为,故选D.

点评:解决该试题的关键是作D1E∥DC,连接B1D1,B1E,BD,则几何体被分割成两个棱锥与一个棱柱,分别求出两个棱锥与一个棱柱的体积,即可得多面体的体积
举一反三
正方体ABCD-A1B1C1D1中,M为棱AB的中点,则异面直线DM与所成角的余弦值为()
A.B.C.D.

题型:不详难度:| 查看答案
已知正方体棱长为1,点上,且,点在平面内,动点到直线的距离与到点的距离的平方差等于1,则动点的轨迹是(    )
A.圆B.抛物线C.双曲线D.直线

题型:不详难度:| 查看答案
(本题满分10分) 在长方体中,分别是的中点,
.
(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使直线垂直,
如果存在,求线段的长,如果不存在,请说明理由.
题型:不详难度:| 查看答案
(本题满分10分)如图,已知四棱锥底面为菱形,平面分别是的中点.
(1)证明:
(2)设, 若为线段上的动点,与平面所成的最大角的正切值为
,求此时异面直线AE和CH所成的角.
题型:不详难度:| 查看答案
如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.