.已知三棱锥的所有棱长均为2,D是SA 的中点,E是BC 的中点,则绕直线SE 转一周所得到的旋转体的表面积为           .

.已知三棱锥的所有棱长均为2,D是SA 的中点,E是BC 的中点,则绕直线SE 转一周所得到的旋转体的表面积为           .

题型:不详难度:来源:
.已知三棱锥的所有棱长均为2,D是SA 的中点,E是BC 的中点,则绕直线SE 转一周所得到的旋转体的表面积为           
答案

解析
解:如图,作DF垂直SE于F,因为三棱锥S-ABC的所有棱长均为2,D是SA 的中点,E是BC 的中点,故CE=1,解得SE=,又SD=1,EA=ES,故DE垂直SA,由此求得DE=,由等面积法可求得DF=,则旋转体的表面积为
举一反三
(本小题满分12分)如图,在四面体中,,点分别是的中点.
 
(1)求证:平面⊥平面
(2)若平面⊥平面,且,求三棱锥的体积.
题型:不详难度:| 查看答案
矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为             
题型:不详难度:| 查看答案
如图,A、B、C是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O为球心,则直线OA与截面ABC所成的角是( )

A.arcsin  B.arccos  C.arcsin D.arccos
题型:不详难度:| 查看答案
一个正方体的棱长为2,将八个直径各为1的球放进去之后,正中央空间能放下的最大的球的直径为______             ____.
题型:不详难度:| 查看答案
(本小题满分9分)平行四边形ABCD中,AB=2,AD=,且,以BD为折线,把折起,使平面,连AC.
(Ⅰ)求证:       (Ⅱ)求二面角B-AC-D平面角的大小;
(Ⅲ)求四面体ABCD外接球的体积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.