(1)在矩形ABCD中,∵AP=PB,DQ=QC,∴AP∥CQ 且AP=CQ, ∴AQCP为平行四边形,∴CP∥AQ.∵CP⊂平面CEP,AQ⊄平面CEP, ∴AQ∥平面CEP. (2)∵EP⊥平面ABCD,AQ⊂平面ABCD,∴AQ⊥EP. ∵AB=2BC,P为AB中点,∴AP=AD.连PQ,则ADQP为正方形.∴AQ⊥DP. 又EP∩DP=P,∴AQ⊥平面DEP.∵AQ⊂平面AEQ.∴平面AEQ⊥平面DEP. (3)∵EP⊥平面ABCD,∴EP为三棱锥E-AQC的高, ∴VE-AQC=S△AQC•EP=×CQ•AD•EP=×1×1×1=.
|