如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC∥平面EBD,并证明.
题型:不详难度:来源:
如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC∥平面EBD,并证明.
|
答案
答:点E的位置是棱SA的中点. 证明:取SA的中点E,连接EB,ED,AC, 设AC与BD的交点为O,连接EO. ∵四边形ABCD是平行四边形, ∴点O是AC的中点. 又E是SA的中点,∴OE是△SAC的中位线. ∴OE∥SC. ∵SC⊄平面EBD,OE⊂平面EBD, ∴SC∥平面EBD. 故E的位置为棱SA的中点. |
举一反三
已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点. (1)求证:B1D1⊥AE; (2)求证:AC∥平面B1DE; (3)(文)求三棱锥A-BDE的体积. (理)求三棱锥A-B1DE的体积.
|
如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,P为AD1的中点,(1)求证:直线C1P∥平面AB1C;(2)求异面直线AA1与B1P所成角的余弦值.
|
在四棱锥P-OABC中,PO⊥底面OABC,∠OCB=60°,∠AOC=∠ABC=90°,且OP=OC=BC=2. (1)若D是PC的中点,求证:BD∥平面AOP; (2)求二面角P-AB-O的余弦值.
|
如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1. (1)求证:BD⊥AA1; (2)在棱BC上取一点E,使得AE∥平面DCC1D1,求的值.
|
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,∠ACB=90°. (1)求证:BC⊥AA1. (2)若M,N是棱BC上的两个三等分点,求证:A1N∥平面AB1M.
|
最新试题
热门考点