如图,在四棱锥中P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2。(1)证明:PA∥平面BDE;(2

如图,在四棱锥中P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2。(1)证明:PA∥平面BDE;(2

题型:0108 模拟题难度:来源:
如图,在四棱锥中P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2
(1)证明:PA∥平面BDE;
(2)证明:AC⊥平面PBD;
(3)求直线BC与平面PBD所成的角的正切值。
答案
解:(1)设,连结EH,
中,因为AD=CD,且DB平分
所以H为AC的中点,
又有题设,E为PC的中点,

平面BDE,平面BDE
所以平面BDE。
(2)因为平面平面ABCD,
所以
由(1)知,

(3)由平面PBD
可知,BH为BC在平面PBD内的射影,
所以为直线与平面PBD所成的角

可得
中,
所以直线BC与平面PBD所成的角的正切值为
举一反三
如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点,
(1)求证:CF⊥BB1
(2)求四棱锥A-ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。
题型:0107 模拟题难度:| 查看答案
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形, (1)求证:DM∥平面APC;
(2)求证:平面ABC⊥平面APC。
题型:陕西省模拟题难度:| 查看答案
如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点,
(1)求证:A1B∥平面ADC1
(2)求证:C1A⊥B1C.
题型:北京模拟题难度:| 查看答案
如图,在四棱锥P-ABCD中,AB∥DC,DC=2AB,AP=AD,PB⊥AC,BD⊥AC,E为PD的中点,
求证:(1)AE∥平面PBC;
(2)PD⊥平面ACE。
题型:湖南省模拟题难度:| 查看答案
如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点,
(1)求证:PA∥平面EFG;
(2)求三棱锥P-EFC的体积.
题型:陕西省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.