已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.求证:A1F⊥平面BED.

已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.求证:A1F⊥平面BED.

题型:不详难度:来源:
已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.
求证:A1F⊥平面BED.
答案
证明:AA1⊥平面ABCD,AF是A1F在面ABCD上的射影
又∵AC⊥BD,∴A1F⊥BD
取BC中点G,连接FG,B1G,
∵A1B1⊥平面BCC1B1,FG⊥平面BCC1B1
∴B1G为A1F在面BCC1B1上的射影,
又∵正方形BCC1B1中,E,G分别为CC1,BC的中点,∴BE⊥B1G,
∴A1F⊥BE又∵EB∩BD=B,
∴A1F⊥平面BED.
举一反三
如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.
题型:不详难度:| 查看答案
P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是


5


17


13
,则P到A点的距离是______.
题型:不详难度:| 查看答案
如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求点D到平面ACE的距离.
题型:不详难度:| 查看答案
已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.
题型:不详难度:| 查看答案
△OAB是边长为4的正三角形,CO⊥平面OAB且CO=2,设D、E分别是OA、AB的中点.
(1)求证:OB平面CDE;
(2)求三棱锥O-CDE的体积;
(3)在CD上是否存在点M,使OM⊥平面CDE,若存在,则求出M点的位置,若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.