如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,.求证:(1)PA⊥平面EBO;(2)F

如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,.求证:(1)PA⊥平面EBO;(2)F

题型:江苏期末题难度:来源:
如图,平面PAC⊥平面ABC,点E、F、O分别为线段PA、PB、AC的中点,点G是线段CO的中点,AB=BC=AC=4,
求证:(1)PA⊥平面EBO;
(2)FG∥平面EBO;
(3)求三棱锥E﹣PBC的体积.
答案

(1)证明:由题意可知,△PAC为等腰直角三角形,△ABC为等边三角形.
因为O为边AC的中点,所以BO⊥AC,
因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO平面ABC,
所以,BO⊥面PAC.因为PA平面PAC,故 BO⊥PA.
在等腰三角形PAC内,O,E为所在边的中点,
故 OE∥PC,∴OE∥PA,
又BO∩OE=O,所以,PA⊥平面EBO.
(2)证明:连AF交BE于Q,连QO.
因为E、F、O分别为边PA、PB、PC的中点,所以=2.
又 Q是△PAB的重心.
于是,=2=
所以,FG∥QO.
因为FG平面EBO,QO平面EBO,
所以,FG∥平面EBO.
(3)解:由(1)可知PA⊥平面EBO,
所以PE⊥BO,
因为O是线段AC的中点,AB=BC=AC=4,
所以BO⊥AC,
所以BO⊥平面PEC,BO是棱锥的高,BO=
S△PEO=S△PAC=?4?=2.
所以三棱锥E﹣PBC的体积V==

举一反三
在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:
(1)直线EF∥面ACD;
(2)BD⊥面EFC.
题型:江苏期中题难度:| 查看答案
如图,在多面体ABCDE中,AE⊥面ABC,BD∥AE,且AC=AB=BC=BD=2,AE=1,F为CD中点.
(1)求证:EF∥平面ABC;
(2)求证:EF⊥平面BCD.
题型:江苏期中题难度:| 查看答案
已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么
①m⊥β;    
②l⊥α;  
③β⊥γ;    
④α⊥β.
可由上述条件可推出的结论有(    )(请将你认为正确的结论的序号都填上).
题型:江苏期末题难度:| 查看答案
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
题型:江苏期中题难度:| 查看答案
如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E、F分别是AB、PB的中点.
(Ⅰ)求证:EF⊥CD;
(Ⅱ)若G是线段AD的中点,则当PB与面ABCD所成角的正切值为何值时,GF⊥平面PCB,并证明你的结论.
题型:江苏期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.