已知某几何体的直观图和三视图如下图所示,其正视图、侧视图均为直角三角形,俯视图为直角梯形。(1)M为AC中点,证明:BM⊥平面PAC:(2)设直线PD与平面PA

已知某几何体的直观图和三视图如下图所示,其正视图、侧视图均为直角三角形,俯视图为直角梯形。(1)M为AC中点,证明:BM⊥平面PAC:(2)设直线PD与平面PA

题型:专项题难度:来源:
已知某几何体的直观图和三视图如下图所示,其正视图、侧视图均为直角三角形,俯视图为直角梯形。
(1)M为AC中点,证明:BM⊥平面PAC:
(2)设直线PD与平面PAC所成的角的正弦值为,求过P-ACD的外接球的体积。
答案
解:(1)证明:由三视图可知PA⊥平面ABCD,
即BM⊥PA,
又AB=BC,且M是AC的中点,
即BM⊥AC,
所以BM⊥平面PAC。(2)连接BM延长交AD于E,即E为AD的中点,
又取PA中点为F,连接MF,EF∥PD,
即PD与平面PAC所成的角,转化为EF与平面PAC 所成的角,
∠MFE为EF与平面PAC所成的角,
又AC⊥CD,PA⊥CD,
所以PC⊥CD
过P-ACD的外接球的球心为PD的中点,
外接球的半径
外接球体积为
举一反三
一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M,G分别是AB,DF的中点。
(1)求证:CM⊥平面FDM;
(2)在线段AD上确定一点P,使得CP∥平面FMC,并给出证明;
(3)求直线DM与平面ABEF所成的角。
题型:专项题难度:| 查看答案
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E-AF-C的余弦值。
题型:山东省高考真题难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为ψ,求证θ+ψ=
题型:湖北省高考真题难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,平面ABC⊥侧面A1ABB1
(1)求证:AB⊥BC;
(2)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明。
题型:湖北省高考真题难度:| 查看答案
如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°,
(Ⅰ)求证:EF⊥平面BCE;
(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(Ⅲ)求二面角F-BD-A的大小。
题型:四川省高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.