如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.(1)求证:BC1∥平面AFB1;(2)求证:平面AFB1⊥平面ACC1A

如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.(1)求证:BC1∥平面AFB1;(2)求证:平面AFB1⊥平面ACC1A

题型:不详难度:来源:
如图,在正三棱柱(底面为正三角形的直棱柱)ABC-A1B1C1中,F是A1C1的中点.
(1)求证:BC1平面AFB1
(2)求证:平面AFB1⊥平面ACC1A1
答案
证明:(1)连接A1B与AB1交于点E,连接EF.在正三棱柱ABC-A1B1C1中,可得四边形ABB1A1是矩形,∴A1E=EB.
又A1F=FC1,∴EFBC1
∵EF⊂平面AB1F,BC1⊄平面AB1F,
∴BC1平面AFB1
(2)由正三棱柱ABC-A1B1C1中,可得AA1⊥底面A1B1C1,∴AA1⊥B1F.
由F是正△A1B1C1的A1C1的中点,∴B1F⊥A1C1
又A1A∩A1C1=A1,∴B1F⊥平面ACC1A1
∴平面AFB1⊥平面ACC1A1
举一反三
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.
题型:不详难度:| 查看答案
在直四棱住ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F、G分别是棱B1B、D1D、DA的中点.
(1)求证:平面AD1E平面BGF;
(2)求证:平面AEC⊥面AD1E.
题型:不详难度:| 查看答案
在长方形AA1B1B中,AB=2AA1,C,C1分别AB,A1B1是的中点(如图1).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图2),已知D,E分别是A1B1,CC1的中点.
(1)求证:C1D平面A1BE;
(2)求证:平面A1BE⊥平面AA1B1B.
题型:不详难度:| 查看答案
如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA平面BDE;
(2)求证:平面BED⊥平面SAC.
题型:不详难度:| 查看答案
如图,正方体的棱长为1,B′C∩BC′=O,求:
(1)AO与A′C′所成角;
(2)AO与平面ABCD所成角的正切值;
(3)平面AOB与平面AOC所成角.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.