解:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,
∴由三垂线定理得:CD⊥PD.
因而,CD与面PAD内两条相交直线AD,PD都垂直,
∴CD⊥面PAD.
又CD⊥面PCD,
∴面PAD⊥面PCD.
(Ⅱ)解:过点B作BE∥CA,且BE=CA, 则∠PBE是AC与PB所成的角.
连接AE,可知AC=CB=BE=AE=,
又AB=2, 所以四边形ACBE为正方形.
由PA⊥面ABCD,得∠PEB=90°
在Rt△PEB中,BE=a2=3b2,PB=,
∴.
∴AC与PB所成的角为.
(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.
在Rt△PAB中,AM=MB,又AC=CB,
∴△AMC≌△BMC,
∴BN⊥CM,故∠ANB为所求二面角的平面角
∵CB⊥AC,
由三垂线定理,得CB⊥PC,
在Rt△PCB中,CM=MB,所以CM=AM.
在等腰三角形AMC中,AN·MC=,
∴.
∴AB=2,
∴
故所求的二面角为。
© 2017-2019 超级试练试题库,All Rights Reserved.