如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.(1)求证

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.(1)求证

题型:不详难度:来源:
如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.

(1)求证:AD⊥PB;
(2)求点E到平面PBC的距离.
答案
(1)见解析   (2)
解析
(1)连接PE、EB、BD,因为平面PAD⊥平面ABCD,△PAD为等边三角形,E为AD的中点,所以PE⊥AD,PE⊥平面ABCD,因为四边形ABCD为菱形,且∠DAB=60°,所以△ABD为等边三角形.

又E为AD的中点,所以BE⊥AE.
又PE∩BE=E,所以AD⊥平面PBE,所以AD⊥PB.
(2)过E作EF⊥PB交PB于点F,由(1)知AD⊥平面PBE,
因为AD∥BC,所以BC⊥平面PBE,
所以平面BPC⊥平面PBE,又平面PBC∩平面PBE=PB,故EF⊥平面PBC.
故点E到平面PBC的距离EF=.
举一反三
如图,在四棱柱中,已知平面平面,.
(1)求证:
(2)若为棱上的一点,且平面,求线段的长度

题型:不详难度:| 查看答案
如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线BE与平面所成角的正弦值.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.

题型:不详难度:| 查看答案
已知两条互不重合的直线m,n,两个不同的平面α,β,下列命题中正确的是(  )
A.若m∥α,n∥β,且m∥n,则α∥β
B.若m⊥α,n∥β,且m⊥n,则α⊥β
C.若m⊥α,n∥β,且m∥n,则α∥β
D.若m⊥α,n⊥β,且m⊥n,则α⊥β

题型:不详难度:| 查看答案
如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABCB.平面ADC⊥平面BDC
C.平面ABC⊥平面BDCD.平面ADC⊥平面ABC

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.