试题分析:(1)设AB1与A1B相交于点P,连接PD,则P为AB1中点,根据中位线定理可知PD∥B1C, 根据线面平行即可得证;(2)由于AA1⊥底面ABC,且BD⊥AC,所以A1D⊥BD,可知∠A1DA就是二面角A1-BD-A的平面角,在三角形A1DA 中,tan∠A1DA=,即可求出二面角的平面角为,即可求出二面角;(3)由(2)作AM⊥A1D,M为垂足,由于BD⊥AC,平面A1ACC1⊥平面ABC,可证BD⊥平面A1ACC1,即可BD⊥AM,可证明AM⊥平面A1DB,连接MP,可知∠APM就是直线A1B与平面A1BD所成的角,在Rt△AA1D中就可以求出∠APM的正弦值,进而求出结果. 解:(1)设AB1与A1B相交于点P,连接PD,则P为AB1中点, ∵D为AC中点,∴PD∥B1C, 又∵PD平面A1BD,∴B1C∥平面A1BD; (2)∵正三棱住ABC-A1B1C1,∴AA1⊥底面ABC, 又∵BD⊥AC,∴A1D⊥BD,∴∠A1DA就是二面角A1-BD-A的平面角, ∵AA1=,AD=AC=1,∴tan∠A1DA=,∴∠A1DA=,即二面角A1-BD-A的大小是; (3)由(2)作AM⊥A1D,M为垂足, ∵BD⊥AC,平面A1ACC1⊥平面ABC,平面A1ACC1∩平面ABC=AC,∴BD⊥平面A1ACC1, ∵AM平面A1ACC1,∴BD⊥AM, ∵A1D∩BD=D,∴AM⊥平面A1DB,连接MP, 则∠APM就是直线A1B与平面A1BD所成的角, ∵AA1=,AD=1,∴在Rt△AA1D中,∠A1DA=,∴AM=1×sin60°=,AP=AB1=,∴sin∠APM=,∴直线AB1与平面A1BD所成的角的正弦值为. |