在四棱柱中,底面,底面为菱形,为与交点,已知,.(1)求证:平面;(2)求证:∥平面;(3)设点在内(含边界),且,说明满足条件的点的轨迹,并求的最小值.

在四棱柱中,底面,底面为菱形,为与交点,已知,.(1)求证:平面;(2)求证:∥平面;(3)设点在内(含边界),且,说明满足条件的点的轨迹,并求的最小值.

题型:不详难度:来源:
在四棱柱中,底面,底面为菱形,交点,已知,.

(1)求证:平面
(2)求证:∥平面
(3)设点内(含边界),且,说明满足条件的点的轨迹,并求的最小值.
答案
(1)详见解析;(2)详见解析;(3)点在线段上,的最小值
解析

试题分析:(1)求证:平面,证明线面垂直,即证线线垂直,即在平面找两条相交直线与垂直,由于底面为菱形,则,又底面,得底面,即,从而得证;(2)求证:∥平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到的中点,连接,交于点,连接,证得四边形是平行四边形,从而得,从而可证∥平面.;(3)连接,则,又在中,,又中点,所以,得平面,由已知可知,,由,得,故点一定在线段上,这样就得到点的轨迹,进而可得的最小值.
试题解析:(1)依题意, 因为四棱柱中,底面
所以底面.
底面,所以.
因为为菱形,所以.而,所以平面.       4分
(2)连接,交于点,连接.依题意,,且,
所以为矩形.所以.又,,,
所以=,所以为平行四边形,则.
平面平面,
所以∥平面.                                         9分

(3)在内,满足的点的轨迹是线段,包括端点.
分析如下:连接,则.
由于,故欲使,只需,从而需.
又在中,,又中点,所以.
点一定在线段上.当时,取最小值.
在直角三角形中,,,,
所以.                                14分
举一反三
已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD.
题型:不详难度:| 查看答案
如图1,在Rt△ABC中,∠ABC=90°,DAC中点,(不同于点),延长AEBCF,将△ABD沿BD折起,得到三棱锥,如图2所示.

(1)若MFC的中点,求证:直线//平面
(2)求证:BD
(3)若平面平面,试判断直线与直线CD能否垂直?并说明理由.
题型:不详难度:| 查看答案
如图,在四棱锥中,底面是矩形,是棱的中点.

(1)求证:平面
(2)求证:平面
(3)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,ABCD为平行四边形,平面PAB,,.M为PB的中点.

(1)求证:PD//平面AMC;
(2)求锐二面角B-AC-M的余弦值.
题型:不详难度:| 查看答案
设m,n是平面内的两条不同直线,l是平面外的一条直线,则的(     )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.