如图:在直三棱柱ABC-DEF中,AB=2,AC=AD=23,AB⊥AC,(1)证明:AB⊥DC,(2)求二面角A-DC-B的余弦值.

如图:在直三棱柱ABC-DEF中,AB=2,AC=AD=23,AB⊥AC,(1)证明:AB⊥DC,(2)求二面角A-DC-B的余弦值.

题型:不详难度:来源:
如图:在直三棱柱ABC-DEF中,AB=2,AC=AD=2


3
,AB⊥AC,
(1)证明:AB⊥DC,
(2)求二面角A-DC-B的余弦值.
答案
(1)在直三棱柱ABC-DEF中,则AD⊥AB,
又∵AB⊥AC,AD∩AC=A.
∴AB⊥平面ACFD,
∴AB⊥CD.
(2)由(1)可得:四边形ACFD为正方形,
连接对角线AF、CD相较于点M,则AM⊥CD.
又∵AB⊥平面ACFD,根据三垂线定理可得CD⊥BM.
∴∠AMB是二面角A-DC-B的平面角.
∵AM=
1
2
×2


3
×


2
=


6
,∴BM=


AB2+AM2
=


22+(


6
)2
=


10
..
∴在Rt△ABM中,cos∠AMB=
AM
BM
=


6


10
=


60
10

故二面角A-DC-B的余弦值为


60
10
举一反三
如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.
题型:不详难度:| 查看答案
边长为a的菱形ABCD中锐角A=θ,现沿对角线BD折成60°的二面角,翻折后|AC|=


3
2
a,则锐角A是(  )
A.
π
12
B.
π
6
C.
π
3
D.
π
4

题型:不详难度:| 查看答案
如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD,AB=1,SB=


3

(1)求证:BC⊥SC;
(2)设M为棱SA中点,求异面直线DM与SB所成角的大小
(3)求面ASD与面BSC所成二面角的大小.
题型:不详难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求多面体ADC-A1B1C1的体积;
(3)求二面角D-CB1-B的平面角的正切值.
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M、N分别在棱PD、PC的中点.
(1)求证:PD⊥平面AMN;
(2)求三棱锥P-AMN的体积;
(3)求二面角P-AN-M的大小.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.