如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面

如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面

题型:广东省期中题难度:来源:
如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙),
(Ⅰ)求证:AB∥平面DNC;
(Ⅱ)当DN的长为何值时,二面角D-BC-N的大小为30°?

答案
解:(Ⅰ)MB∥NC,MB平面DNC,NC平面DNC,
∴MB∥平面DNC,
同理MA∥平面DNC,
又MA∩MB=M,且MA,MB平面MAB,
。(Ⅱ)过N作NH⊥BC交BC延长线于H,连结HN,
∵平面AMND⊥平面MNCB,DN⊥MN,
∴DN⊥平面MBCN,从而DH⊥BC,
∴∠DHN为二面角D-BC-N的平面角,
∴∠DHN=30°,
由MB=4,BC=2,∠MCB=90°知∠MBC=60°,

∴NH=3·sin60°=
由条件知:
举一反三
如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1
(1)试求的值;
(2)求二面角F-AC1-C的大小;
(3)求点C1到平面AFC的距离。

题型:广东省月考题难度:| 查看答案
一个多面体的直观图(正视图,侧视图,俯视图)如图所示,M,N分别为A1B,B1C1的中点,
(Ⅰ)求证:MN∥平面ACC1A1
(Ⅱ)求证:MN⊥平面A1BC;
(Ⅲ)求二面角A-A1B-C的大小。

题型:天津月考题难度:| 查看答案
在长方体ABCD-A1B1C1D1中,AB=,B1B=BC=1,则面BD1C与面AD1D所成二面角的大小为

[     ]

A.30°
B.45°
C.60°
D.90°
题型:0116 月考题难度:| 查看答案
如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4,
(Ⅰ)求证:B1O⊥平面AEO;
(Ⅱ)求二面角B1-AE-O的余弦值。

题型:0117 期末题难度:| 查看答案
已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为a的菱形,∠BAD=120°,PA=b,
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)设AC与BD交于点O,M为OC中点,若二面角O-PM-D的正切值为2,求a:b的值。

题型:浙江省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.