如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD。(1)求异面直线BF与DE所成的角

如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD。(1)求异面直线BF与DE所成的角

题型:0101 月考题难度:来源:
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD。

(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值。
答案
解:(1)由题设知,BF∥CE,
所以∠CED(或其补角)为异面直线BF与DE所成的角,
设P为AD的中点,连结EP、PC,
因为FEAP,
所以FAEP,
同理ABPC,
又FA⊥平面ABCD,
所以EP⊥平面ABCD,
而PC、AD都在平面ABCD 内,
故EP⊥PC,EP⊥AD,
由AB⊥AD,可得PC⊥AD
设FA=a,则EP=PC=PD=a,

故∠CED=60°,
所以异面直线BF与DE所成的角的大小为60°;
(2)因为DC=DE且M为CE的中点,
所以DM⊥CE.连结MP,则MP⊥CE,
又MP∩DM =M,
故CE⊥平面AMD,
而CE平面CDE,
所以平面AMD⊥平面CDE;
(3)设Q为CD的中点,连结PQ、EQ,
因为CE=DE,
所以EQ⊥CD,
因为PC=PD,
所以PQ⊥CD,
故∠EQP为二面角A-CD-E的平面角,
由(1)可得,EP⊥PQ,
于是在Rt△EPQ中,
所以二面角A-CD-E的余弦值为
举一反三
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1,
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围。
题型:0111 期中题难度:| 查看答案
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点E,E分别在棱PB,PC上移动,且DE∥BC,
(1)求证:DE⊥平面PAC;
(2)设PA=a,当PE为何值时,二面角A-DE-P为直二面角?

题型:0111 期中题难度:| 查看答案
如图,正方体ABCD-A1B1C1D1中,E、F分别为AB与BB1的中点,
(Ⅰ)求证:EF⊥平面A1D1B;
(Ⅱ)求二面角F-DE-C的正切值。

题型:0111 期中题难度:| 查看答案
如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示,
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值。

题型:浙江省期中题难度:| 查看答案
如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=,EF=2,
(1)求证:AE∥平面DCF;
(2)求证:EF⊥平面DCE;
(3)当AB的长为何值时,二面角A-EF-C的大小为60°?

题型:山东省期中题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.