本试题主要是考查了参数方程与极坐标方程与普通方程的转化,以及直线与椭圆的 位置关系的运用。 (1)结合已知的极坐标方程和参数方程,消去参数后得到普通方程,然后利用直线与圆的位置关系判定。 (2)拉伸后的参数方程分别为C1′:θ为参数); C2′:(t为参数)联立消元得其判别式, 可知有公共点。 解:(1)C1是圆,C2是直线.C1的普通方程为, 圆心C1(0,0),半径r=2.C2的普通方程为x-y-1=0. 因为圆心C1到直线x-y+ 1=0的距离为, 所以C2与C1有两个公共点. (2)拉伸后的参数方程分别为C1′:θ为参数);C2′:(t为参数) 化为普通方程为:C1′:,C2′: 联立消元得其判别式, 所以压缩后的直线C2′与椭圆C1′仍然有两个公共点,和C1与C2公共点个数相同 |