椭圆x2a2+y2b2=1(a>b>0)的离心率为32,椭圆与直线x+2y+8=0相交于点P,Q,且|PQ|=10,求椭圆的方程.

椭圆x2a2+y2b2=1(a>b>0)的离心率为32,椭圆与直线x+2y+8=0相交于点P,Q,且|PQ|=10,求椭圆的方程.

题型:不详难度:来源:
椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


3
2
,椭圆与直线x+2y+8=0相交于点P,Q,且|PQ|=


10
,求椭圆的方程.
答案
e=
c
a
=


3
2
,则c=


3
2
a
.由c2=a2-b2,得a2=4b2





x2
4b2
+
y2
b2
=1
x+2y+8=0
消去x,得2y2+8y+16-b2=0.
由根与系数关系,得y1+y2=-4,y1y2=
16-b2
2

|PQ|2=(x2-x12+(y2-y12 =5(y1-y22 =5[(y1+y22-4y1y2]=10,
即5[16-2(16-b2)]=10,解得b2=9,则a2=36.
所以椭圆的方程为
x2
36
+
y2
9
=1
举一反三
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,过点(-


3
1
2
)离心率e=


3
2

(1)求椭圆方程;
(2)若过点(1,0)的直线l与椭圆C交于E,F两点,且以EF为直径的圆过原点,试求直线l方程;
(3)过点A(3,0)作直线与椭圆交于B,C两点且xB+xC=2,若直线L:y=kx+m是直线BC垂直平分线,求m的取值范围.
题型:不详难度:| 查看答案
椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),直线y=k(x-1)经过椭圆C的一个焦点与其相交于点M,N,且点A(1,
3
2
)
在椭圆C上.
(I)求椭圆C的方程;
(II)若线段MN的垂直平分线与x轴相交于点P,问:在x轴上是否存在一个定点Q,使得
|PQ|
|MN|
为定值?若存在,求出点Q的坐标和
|PQ|
|MN|
的值;若不存在,说明理由.
题型:不详难度:| 查看答案
F1(-1,0),F2(1,0)是椭圆的两焦点,过F2的直线l交椭圆于P、Q两点,若△PF1Q的周长为16,则椭圆方程为(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.B.
C.D.
已知椭圆中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.
已知椭圆C的焦点为F1(-5,0),F2(5,0),焦点到短轴端点的距离为2


10

(1)求椭圆C的标准方程;
(2)设点P是椭圆C上的一点,且在第一象限.若△PF1F2为直角三角形,试判断直线PF1与圆O:x2+y2=
5
2
的位置关系.