已知椭圆中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.

已知椭圆中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.

题型:不详难度:来源:
已知椭圆中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程.
答案
设椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,由题意可得





a=2
a-c=1
,解得a=2,c=1,
∴b2=a2-c2=3.
因此椭圆的方程为
x2
4
+
y2
3
=1
举一反三
已知椭圆C的焦点为F1(-5,0),F2(5,0),焦点到短轴端点的距离为2


10

(1)求椭圆C的标准方程;
(2)设点P是椭圆C上的一点,且在第一象限.若△PF1F2为直角三角形,试判断直线PF1与圆O:x2+y2=
5
2
的位置关系.
题型:不详难度:| 查看答案
若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,一个焦点的坐标是(3,0),则椭圆的标准方程为(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.B.
C.D.
中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2


13
,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.
(Ⅰ)求椭圆和双曲线的方程;
(Ⅱ)若P为双曲线与椭圆的交点,求cos∠F1PF2
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=


6
3
,焦点是函数f(x)=x2-2与x轴的交点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线y=kx+2(k≠0与椭圆交于C、D两点,|CD|=
6


2
5
,求k的值.
已知三点P(
5
2
,-
3
2
)
、A(-2,0)、B(2,0).(1)求以A、B为焦点且过点P的椭圆的标准方程;(2)求以A、B为顶点且以(1)中椭圆左、右顶点为焦点的双曲线方程.