已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为

已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为

题型:惠州模拟难度:来源:
已知点(x,y)在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x2+y2=8;定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求m的取值范围.
答案
(1)在曲线C上任取一个动点P(x,y),
则点(x,2y)在圆x2+y2=8上.
所以有x2+(2y)2=8.
整理得曲线C的方程为
x2
8
+
y2
2
=1

(2)∵直线l平行于OM,且在y轴上的截距为m,
KOM=
1
2

∴直线l的方程为y=
1
2
x+m






y=
1
2
x+m
x2
8
+
y2
2
=1.

得x2+2mx+2m2-4=0
∵直线l与椭圆交于A、B两个不同点,
∴△=(2m)2-4(2m2-4)>0,
解得-2<m<2且m≠0.
∴m的取值范围是-2<m<0或0<m<2.
举一反三
椭圆C的中心为坐标原点O,焦点在y轴上,离心率e=


2
2
,椭圆上的点到焦点的最短距离为1-e,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且


AP


PB

(1)求椭圆C的方程;
(2)若


OA


OB
=4


OP
,求m的取值范围.
题型:如东县三模难度:| 查看答案
已知中心在原点O,焦点在x轴上的椭圆C的离心率为


3
2
,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为
6


5
5

(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求


EP


QP
的取值范围.魔方格
题型:镇江一模难度:| 查看答案
如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为(  )
题型:广州一模难度:| 查看答案
题型:揭阳二模难度:| 查看答案
题型:上海难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A. B.
C.D.
如图,线段AB过y轴负半轴上一点M(0,a),A、B两点到y轴距离的差为2k.
(Ⅰ)若AB所在的直线的斜率为k(k≠0),求以y轴为对称轴,且过A、O、B三点的抛物线的方程;
(Ⅱ)设(1)中所确定的抛物线为C,点M是C的焦点,若直线AB的倾斜角为60°,又点P在抛物线C上由A到B运动,试求△PAB面积的最大值.魔方格
(1)求右焦点坐标是(2,0),且经过点(-2,-


2
)的椭圆的标准方程.
(2)已知椭圆C的方程是
x2
a2
+
y2
b2
=1(a>b>0).设斜率为k的直线l交椭圆C于A、B两点,AB的中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上.
(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.魔方格