如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1)。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1)。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点

题型:山东省高考真题难度:来源:
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1)。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
答案
解:(Ⅰ)设椭圆的半焦距为c,由题意知:
所以
又a2=b2+c2,因此b=2,
故椭圆的标准方程为
由题意设等轴双曲线的标准方程为
因为等轴双曲线的顶点是椭圆的焦点,所以m=2,
因此双曲线的标准方程为
(Ⅱ)设A(x1,y1),B(x2,y2),P(x0,y0),

因为点P在双曲线x2-y2=4上,所以x02-y02=4,
因此,即k1k2=1。
(Ⅲ)由于PF1的方程为y=k1(x+2),
将其代入椭圆方程得
由韦达定理得
所以

同理可得

又k1k2=1,
所以
故|AB|+|CD|=|AB|·|CD|,
因此,存在λ=,使|AB|+|CD|=λ|AB|·|CD|恒成立.
举一反三
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1。
 (1)求椭圆C的标准方程;
 (2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB 为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标。
题型:山东省高考真题难度:| 查看答案
如图,在直角坐标系中,中心在原点,焦点在x轴上的椭圆G的离心率为,左顶点A(-4,0),圆O′:(x-2)2+y2=r2是椭圆G的内接△ABC的内切圆。
(1)求椭圆G的方程;
(2)求圆O′的半径;
(3)过M(0,1)作圆O′的两条切线交椭圆于E,F,判断直线EF与圆的位置关系,并证明。
题型:0103 模拟题难度:| 查看答案
已知椭圆的两个焦点F1(-,0),F2,0),且椭圆短轴的两个端点与F2构成正三角形。
(1)求椭圆的方程;
(2)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使恒为定值,求m的值。
题型:0103 模拟题难度:| 查看答案
已知椭圆长轴端点为A、B,O为椭圆中心,F为椭圆的右焦点,且
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰好为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由。
题型:山西省模拟题难度:| 查看答案
设椭圆C1(a>b>0)的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图,若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点。
(1)求椭圆C1的方程;
(2)设M(0,-),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值。
题型:山西省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.