已知椭圆=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为(  )A.[,1)B.(,1)C.

已知椭圆=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为(  )A.[,1)B.(,1)C.

题型:不详难度:来源:
已知椭圆=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为(  )
答案
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.[,1)B.(,1)C.(0,D.(0,]
已知F1,F2为椭圆
x2
4
+y2=1
的两个焦点,并且椭圆上点P满足∠F1PF2=90°,则△F1PF2的面积为______.
已知椭圆的标准方程为
x2
6-m
+
y2
m-1
=1

(1)若椭圆的焦点在x轴,求m的取值范围;
(2)试比较m=2与m=3时两个椭圆哪个更扁.
已知A,B,C为椭圆W:x2+2y2=2上的三个点,O为坐标原点.
(Ⅰ)若A,C所在的直线方程为y=x+1,求AC的长;
(Ⅱ)设P为线段OB上一点,且|OB|=3|OP|,当AC中点恰为点P时,判断△OAC的面积是否为常数,并说明理由.
椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为______.
如果椭圆
x2
36
+
y2
9
=1
的弦被点(4,-2)平分,则这条弦所在的直线方程是______.