已知点A(-2,0),B(2,0),若点P(x,y)在曲线x216+y212=1上,则|PA|+|PB|=______.

已知点A(-2,0),B(2,0),若点P(x,y)在曲线x216+y212=1上,则|PA|+|PB|=______.

题型:东城区二模难度:来源:
已知点A(-2,0),B(2,0),若点P(x,y)在曲线
x2
16
+
y2
12
=1
上,则|PA|+|PB|=______.
答案
∵A(-2,0),B(2,0)是曲线
x2
16
+
y2
12
=1
的两个焦点坐标,
∴椭圆的第一定义可知|PA|+|PB|=2a=8.
故答案为:8.
举一反三
一系列椭圆都以一定直线l为准线,所有椭圆的中心都在定点M,且点M到l的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai(i=1,2,…,n),则a1+a2+…+an=(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
A.B.C.D.
已知椭圆C1的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,离心率为


3
2
,两个焦点分别为F1和F2,椭圆C1上一点到F1和F2的距离之和为12,椭圆C2的方程为
x2
(a-2)2
+
y2
b2-1
=1
,圆C3:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak
(I)求椭圆C1的方程;
(II)求△AkF1F2的面积;
(III)若点P为椭圆C2上的动点,点M为过点P且垂直于x轴的直线上的点,
|OP|
|OM|
=e
(e为椭圆C2的离心率),求点M的轨迹.
设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
x2
a2
+
y2
b2
=1
写出类似的性质,并加以证明.
椭圆与圆(x-a)2+y2=9有公共点,则实数a的取值范围是(   )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.|a|≤6B.0<a≤5C.|a|<5D.a≤6
已知焦点在x轴上的椭圆
x2
4
+
y2
b2
=1,(b>0)
F1,F2是它的两个焦点,若椭圆上存在点P,使


PF1


PF2
=0
,则b的取值范围是 ______.