已知椭圆的长轴长为,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;(2)在曲线上有四个不同的点,满

已知椭圆的长轴长为,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;(2)在曲线上有四个不同的点,满

题型:不详难度:来源:
已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;
(2)在曲线上有四个不同的点,满足共线,共线,且,求四边形面积的最小值.
答案
(1)(ⅰ);(ⅱ) ;(2). 四边形面积的最小值为.
解析

试题分析:(1)(ⅰ)由题意,,再结合解出的值从而得到椭圆的标准方程;(ⅱ)由条件“动圆过点,且与直线相切”知动圆圆心到定点的距离等于到定直线的距离,且定点不在定直线上,所以动圆圆心的轨迹是以为焦点,以为准线的抛物线;
(2)由题设知直线和直线互相垂直相交于点,且分别与物抛线有两个交点,因此两直线的斜率均存在且不为零,所以解决问题的基本思路是以其中一条直线的斜率为自变量,利用直线与抛物线相交的位置关系,将四边形的面积表示成直线斜率的函数,转化为函数的最值问题.
试题解析:(1)(ⅰ)由已知可得 
则所求椭圆方程                                                 3分
(ⅱ)由已知可得动圆圆心的轨迹为抛物线,且抛物线 的焦点为 ,准线方程为 ,则动圆圆心轨迹方程为                                                         6分
(2)由题设知直线 的斜率均存在且不为零
设直线的斜率为, 则直线的方程为: 
联立
消去 可得                                     8分
由抛物线这义可知:
                     10分
同理可得                                                     11分
(当且仅当时取到等号)
所以四边形面积的最小值为.                           14分
举一反三
已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)若直线)与椭圆交于不同的两点,且线段 
的垂直平分线过定点,求实数的取值范围.
题型:不详难度:| 查看答案
已知椭圆的一个焦点为,离心率为.设是椭圆长轴上的一个动点,过点且斜率为的直线交椭圆于两点.
(1)求椭圆的方程;
(2)求的最大值.
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦.当直线斜率为0时,

(1)求椭圆的方程;
(2)求的取值范围.
题型:不详难度:| 查看答案
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为的面积为,令,求的最大值.
题型:不详难度:| 查看答案
过椭圆内一点R(1,0)作动弦MN,则弦MN中点P的轨迹是(  )
A.圆B.椭圆C.双曲线D.抛物线

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.